CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge Ordinary Level

MARK SCHEME for the May/June 2015 series

5054 PHYSICS

5054/22
Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.
$®$ IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge O Level - May/June 2015	5054	22

1 (a) weight (pulls spring down and causes tension) or force/pull of gravity or mass is in gravitational field
(b) has a direction
(c) (i) $1 \quad l=l_{0}+e$ or $l_{0}=l-e$ or $e=l-l_{0}$ B1

236 cm B1
(ii) curve upwards after 10 N B1

2 (a) tape B1
(b) (i) mass \div volume or mass per unit volume \quad B1
(ii) $(\mathrm{V}=) 15 \times 0.25 \times 2$ or 7.5 seen C1
$2400 \mathrm{~kg} / \mathrm{m}^{3}$ A1

$\begin{array}{lll}\text { (iv) } \begin{array}{l}\text { (length doubles) so both area and weight/force double } \\ \text { or area and force/weight both increase/larger (in proportion) } \\ \text { or height and density the same (in } P=d g h)\end{array} & \text { B1 }\end{array}$

3 (a) (i) (efficiency =) useful energy \div input energy
or 95000/120 $000(\times 100)$
$0.79(17)$ or 79(.17)\%
(ii) $(P=)$ energy/time or $90000 / 60$ C1 1500 W A1
(b) electric kettle and B1

- more energy/heat per minute output/into water/supplied
- more power output
transfers heat/energy faster/at a faster rate
(c) steam molecules have more potential energy; further apart; smaller force/bonds between molecules; have latent heat; more random arrangement

4 (a) $(H=) m c T$ or $330 \times 4.2 \times 13$

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge O Level - May/June 2015	5054	22

(b) ice takes in/needs heat/energy

- for latent heat
- to melt/turn to water (at $0^{\circ} \mathrm{C}$)/change state
- to break bonds/for molecules to gain P.E.
water (in jug initially at $0^{\circ} \mathrm{C}$) warms up
or ice (and melted water in jug)
- stays at $0^{\circ} \mathrm{C} /$ stays cold/stays at constant temp.
- gives larger temperature difference (between liquid and melting ice in jug)
(c) metal is a good conductor (of heat)
or metal/can has lower heat capacity
allow opposite statements for plastic, e.g. plastic is an insulator (of heat),
penalise wrong statements and Physics, e.g. liquid evaporates from can, metals conduct temperature/convect better

5 (a) negative charge moves from hair/person/head to balloon
(b) hair is positive (at end)
opposite charges attract B1
or positive and negative attract
(c) charges/electrons

- don't flow away
- aren't conducted (to earth/person)
stay on balloon/on insulator
(d) any sensible example e.g. photocopier, electrostatic precipitator, flu ash removal, spray painting, printing, crop spraying, lightning fixes nitrogen in atmosphere etc.

6 (a) (i) mention of (magnetic) field/flux (of N and S -poles)
(coil/wire) cuts magnetic field/flux/lines
or magnetic flux in coil changes
$\begin{array}{ll}\text { (ii) (one side of) coil cuts one way and then the other } & \text { B1 } \\ \text { or (side) moves one way and then the other/returns } \\ \text { or flux increases and then decreases }\end{array}$
(b) increase in emf for both stronger magnets and more turns B1
no change/same frequency for both stronger magnets and more turns B1
increase and increase for turn the coil faster B1

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge O Level - May/June 2015	5054	22

7 (a) to provide a complete circuit (with live)
or to pass current back to mains
or provide a return path for the current
(b) current/charge/electrons flow to earth/earth wire/ground (when live touches case)
fuse melts/blows and disconnects circuit/cuts live/stops current
(c) doubly insulated
or case/body made of plastic/insulator/not made of metal
or user cannot touch metal \quad B1
(d) (circuit breaker)

- turns off/acts fast(er)
- can be reset
- easy to see it has tripped/switched
- can detect small difference between live and neutral currents / small
(leakage) current to earth

8 (a) left column both $1 \quad$ B1
right column 0 and 1 B1
(b) (at least one of the atoms) contain same number of electrons and protons B1
or have 1 electron and 1 proton
charge on electron and proton opposite
or electron negative and proton positive
or charge on electron neutralises/cancels/balances proton charge neutrons have no charge

9 (a) number of waves (that pass a point) M1
or number of oscillations (passing a point)
in unit time or per second or in 1 second A1
(b) (i) 1.5 cm B1
(ii) $\quad(v=) f \lambda$ or 5×1.5 seen C1 $7.5 \mathrm{~cm} / \mathrm{s}$ A1
(c) (i) wavelength decreases B1
travels a shorter distance in the same time B1
or frequency stays the same (and $v=f \lambda$)

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge O Level - May/June 2015	5054	22

(ii) wavefronts with smaller wavelength (by eye)

B1
smaller angle to surface (by eye) and slanted down B1
wavefronts join those in shallow water

(d) (i)

sound	water
particles/wave/source vibrate/oscillate/move in direction of (travel of) wave/ along wave move backwards and forwards	particles/wave/source vibrate/oscillate/move at 90° to direction of (travel of) wave move up and down
(contains) compressions and rarefactions or particles come closer/further apart	(contains) crests and troughs
speed $300-330 \mathrm{~m} / \mathrm{s}$	wave slower (than sound)

(ii) method of generating sound, e.g. (loud) speaker (and signal generator)
apparatus that enables refraction clear, e.g. carbon dioxide in balloon or any shape where refraction is possible
method of detecting refraction, e.g. microphone and how it is used to show refraction

10 (a) (i) 1 S-pole on right of core B1
$\begin{array}{lll}2 & \begin{array}{l}\text { N-pole anywhere on vertical section of armature } \\ \text { and S-pole anywhere on horizontal section of armature }\end{array} & \text { B1 } \\ \text { or }\end{array}$
N -pole on left of vertical section of armature and S-pole on right
(ii) poles (on core) reverse/change positions B1
(armature still) attracted (to core) B1
(iii) (iron is a) temporary magnet

B1
or (iron) easily demagnetised
or steel retains magnetism
when current off/no battery/switch off/circuit open B1
and
armature released/does not stay attracted/opens connections (at AB)

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge O Level - May/June 2015	5054	22

(b) (i) thermistor B1
(ii) resistance (of X) decreases B1
current (in coil) increases or more voltage across coil B1

 and
 either relay switch closes or circuit (to bell) complete
(iii) $1(V=)$ IR or $1.5\left(\times 10^{-3}\right) \times 2000$ C1
3(.0) V A1
2 9(.0)V B1
$312 / 200$ or $0.06(\mathrm{~A})$ or $60(\mathrm{~mA})$ seen C1
or $\left(R_{\mathrm{T}}=\right) 195(.12 \Omega)$
$61(.5) \mathrm{mA}$ or 0.061 (5) A or 62 mA or 0.062 A A1
(iv) light dependent resistor or LDR B1
11 (a) (i) distance (travelled) per second or speed C1
distance (travelled) per second/speed in a given direction A1
or displacement/time
or change in displacement per unit time
or displacement (travelled/covered) per unit time
or rate of change of displacement
(ii) opposite direction B1
(iii) 1 value seen for v and corresponding value of t C1
$0<t \leqslant 1.4$ and $0<v \leqslant 14$
($a=$) $v-u / t$ algebraic or numerical equation C1
$10 \mathrm{~m} / \mathrm{s}^{2}$ A1
2 sensible comment A1
(iv) $14(.0 \mathrm{~s})$ B1
2 weight or force due to gravity mentioned (at D) B1
mention of B1- upwards force (on man) from cord- tension / elastic force from cord (on man)force in cord/upward force/tension greater than downwards forceB1or resultant force upwards
(b) (i) 5000 B1
20000 B1
(ii) $(h=) \mathrm{PE} / \mathrm{mg}$ or $5000=50 \times 10 \times h$ C1
10 m A1

